
Design and implementation
of message-passing
services for the Blue
Gene/L supercomputer

G. Almási
C. Archer

J. G. Castaños
J. A. Gunnels
C. C. Erway

P. Heidelberger
X. Martorell

J. E. Moreira
K. Pinnow

J. Ratterman
B. D. Steinmacher-Burow

W. Gropp
B. Toonen

The Blue Genet/L (BG/L) supercomputer, with 65,536 dual-
processor compute nodes, was designed from the ground up to
support efficient execution of massively parallel message-passing
programs. Part of this support is an optimized implementation of
theMessage Passing Interface (MPI), which leverages the hardware
features of BG/L. MPI for BG/L is implemented on top of a more
basic message-passing infrastructure called the message layer. This
message layer can be used both to implement other higher-level
libraries and directly by applications. MPI and the message layer
are used in the two BG/L modes of operation: the coprocessor
mode and the virtual node mode. Performance measurements show
that our message-passing services deliver performance close to the
hardware limits of the machine. They also show that dedicating
one of the processors of a node to communication functions
(coprocessor mode) greatly improves the message-passing
bandwidth, whereas running two processes per compute node
(virtual node mode) can have a positive impact on application
performance.

Introduction
The Blue Gene*/L (BG/L) supercomputer is a new,

massively parallel system developed by IBM in

partnership with Lawrence Livermore National

Laboratory (LLNL). BG/L uses system-on-a-chip (SoC)

integration [1] and a highly scalable architecture [2] to

assemble a machine with 65,536 dual-processor compute

nodes. Operating at a clock frequency of 700 MHz, BG/L

will deliver 180 or 360 teraflops of peak computing

power, depending on its mode of operation.

Each BG/L compute node can address only its

local memory, making message passing the natural

programming model for the machine. This paper

describes how we designed and implemented application-

level message-passing services for BG/L. The services

include both an implementation of the Message Passing

Interface (MPI) [3] and a more basic message-passing

infrastructure called the message layer.

Our starting point for MPI on BG/L [4] is the MPICH2

library [5] from Argonne National Laboratory. MPICH2

is designed with a portability layer called the Abstract

Device Interface, Version 3 (ADI3), which simplifies the

job of porting it to different architectures. With this

design, we could focus on optimizing the constructs

that were of importance to BG/L.

BG/L is a feature-rich machine. A good

implementation of message-passing services in BG/L

must leverage those features to deliver high-performance

communication services to applications. Its compute

nodes are interconnected by two high-speed networks:

a three-dimensional (3D) torus network that supports

direct point-to-point communication [6] and a collective

network to support broadcast and reduction operations.

Those networks are mapped to the address space of user

processes and can be used directly by a message-passing

library. We show how we designed our message-passing

implementation to take advantage of both types of

memory-mapped networks.

Another important architectural feature of BG/L is

its dual-processor compute nodes. A compute node can

operate in one of two modes. In coprocessor mode, a

single process, spanning the entire memory of the node,

can use both processors by running one thread on each

processor. In virtual node mode, two single-threaded

�Copyright 2005 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 G. ALMÁSI ET AL.

393

0018-8646/05/$5.00 ª 2005 IBM

processes, each using half of the node memory, run

on one compute node, with each process bound to

one processor. This creates the need for two modes

in our message-passing services, each with a different

performance impact.

We validated our MPI implementation on BG/L by

analyzing the performance of various benchmarks

on 32-node and 512-node prototypes. We used

microbenchmarks to assess how well MPI performed

compared with the limits of the hardware and how

different modes of operation within MPI compared

with one another. We used the NASA Advanced

Supercomputing (NAS) Parallel Benchmarks [7] to

demonstrate the benefits of virtual node mode when

executing computation-intensive benchmarks.

The rest of this paper is organized as follows. Next is an

overview of the hardware and software architectures of

BG/L, followed by a discussion of those details of BG/L

hardware and software that were particularly influential to

our MPI implementation. The architecture of our MPI

implementation is then presented. A discussion of the

basic architecture of the BG/L message layer is broken

down into discussions of point-to-point and collective

operations in the message layer. We then describe and

discuss the experimental results on the prototype machines

that validate our approach, and draw our conclusions.

BG/L supercomputer overview
The BG/L hardware [2, 8] and system software [9, 10]

have been extensively described elsewhere. In this section,

we present a short summary of the BG/L architecture

to serve as a background to the sections following.

Hardware architecture

BG/L incorporates 65,536 compute nodes and 1,024

input/output (I/O) nodes based on a custom SoC design

that integrates embedded low-power processors, high-

performance network interfaces, and embedded memory.

The basic unit of this architecture is a chip incorporating

two standard 32-bit embedded IBM PowerPC* 440

(PPC440) processors with private L1 instruction and data

caches, a small (2-KB) L2 cache and prefetch buffer, and

4 MB of embedded dynamic random access memory

(DRAM). The PPC440 cores are not designed to support

multiprocessor architectures. Therefore, their L1 caches

are not coherent, and the processors do not implement

atomic memory operations. To make up for this, the

BG/L chip provides a custom synchronization device, the

lockbox (a limited number of memory locations for fast

atomic test-and-sets and barriers), and a fast software

memory coherency mechanism (the blind device).

Each processor in the chip is augmented with a dual

floating-point unit (FPU) consisting of two 64-bit FPUs

operating in parallel. The dual FPU contains two

323 64-bit register files and is capable of dispatching two

fused multiply–adds in every cycle, i.e., 2.8 Gflops per

node at the 700-MHz target frequency. When both

processors are used, the peak performance is doubled

to 5.6 Gflops.

BG/L chips are also equipped with 1 GB of double-

data-rate (DDR) memory. The chips are built into racks

of 1,024 each (since their low-power design permits very

dense packaging), adding up to a total of 1 TB of memory

and 5.6 teraflops of floating-point performance.

The BG/L machine features five different networks (not

all of which are described here). For the purposes of our

MPI implementation, the most important network is the

torus. Each of the 65,536 compute nodes is connected

to its six neighbors through bidirectional links. The 64

racks in the full BG/L system form a 643 323 32 3D

torus. The network hardware guarantees reliable,

deadlock-free delivery of variable-length packets.

The fully equipped BG/L also contains 1,024 I/O nodes

(one I/O node to 64 compute nodes) that connect the

computational core with the external world. We call the

collection formed by one I/O node and its associated

compute nodes a processing set, or pset. Compute and

I/O nodes are built using the same BG/L chip, but I/O

nodes have the Ethernet network enabled.

The collective network provides high-performance

broadcast and reduce operations spanning all compute

and I/O nodes. It provides a latency of 2.5 ls for a 65,536-
node system. Its name notwithstanding, the collective

network also provides point-to-point messaging

capabilities which are used to implement communication

between I/O nodes and compute nodes. The collective is

wired in a way that allows psets to be physically disjoint

from one another with the I/O node acting as the root of

the pset.

The global interrupt network provides configurable OR

wires to perform full-system hardware barriers in 1.5 ls.
The torus, collective, and global interrupt network

interfaces are mapped to the memory of the PPC440

cores. Network packets can be sent and received by

reading and writing these addresses.

All of the torus, collective, and global interrupt

links between midplanes (a 512-compute-node unit of

allocation) are wired through a custom link chip that

performs redirection of signals. The link chips provide

isolation between independent partitions while

maintaining fully connected networks within a partition.

Software architecture

User application processes run exclusively on compute

nodes under the supervision of a custom compute node

kernel (CNK). The CNK is a simple, minimalist runtime

system written in approximately 5,000 lines of Cþþ that

supports a single application running by a single user in

G. ALMÁSI ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

394

each BG/L node, reminiscent of PUMA [11]. It provides

exactly two threads: one on each PPC440 processor. The

CNK does not require or provide scheduling and context

switching. Physical memory is statically mapped,

protecting a few kernel regions from user applications.

Porting scientific applications to run on this new kernel

has been a straightforward process because we provide a

standard glibc runtime system with most of the POSIX

system calls.

Many of the CNK system calls are not directly

executed in the compute node, but are function-shipped,

i.e., forwarded through the collective to an I/O node

where they are then executed. For example, when a user

application performs a write system call, the CNK sends

collective packets to the I/O node managing the pset. The

packets are received on the I/O node by the console

I/O daemon (CIOD). This daemon buffers the incoming

packets, performs a GNU/Linux** write system call

against a mounted file system, and returns the status

information to the CNK through the collective network.

The daemon also handles job start and termination on the

compute nodes.

I/O nodes run a customized version of the PowerPC

port of the GNU/Linux kernel (Version 2.4), similar to

the one found in the MontaVista distribution [12]. They

also implement I/O and process control services for the

user processes running on the compute nodes. We mount

a small ramdisk with system utilities to provide a root file

system.

The system is complemented by a control system

implemented as a collection of processes running in an

external computer. All of the visible state of the BG/L

machine is maintained in a commercial database.

We have modified the middleware (such as IBM

LoadLeveler* and mpirun) to operate through the

CIOD-based control system, rather than launching

individual daemons on all of the nodes.

Hardware and system software impact on MPI
implementation

In this section we present a detailed discussion of the Blue

Gene/L features that have a significant impact on the

MPI implementation.

Torus network

The torus network guarantees deadlock-free delivery of

packets. Packets are routed on an individual basis, using

one of two routing strategies: a deterministic routing

algorithm, in which all packets follow the same path

along the x, y, z dimensions (in this order), and a minimal

adaptive routing algorithm, which allows individual

packets to make decisions about routing, resulting in

potential out-of-order delivery of packets.

MPI ordering semantics enforce the order in which

incoming messages are matched against the queue of

posted messages. Adaptively routed packets may arrive

out of order, forcing the MPI library to reorder them

in software. Packet reordering is expensive because it

involves memory copies and requires packets to carry

additional sequence and offset information, reducing

payload. On the other hand, deterministic routing leads

to more network congestion and increased message

latency, even on lightly used networks.

Each link in the torus network delivers two bits of raw

data per central processing unit (CPU) cycle (0.25 bytes

per cycle per link). Torus packets are multiples of

32 bytes, up to 256 bytes. The first 16 bytes of every

packet contain destination, routing, and software header

information. Thus, at most, 240 bytes of each packet can

be used to transmit useful data. In addition, for every

256 bytes injected into the torus by the processors, 14

additional bytes traverse the wire with cyclic redundancy

checks (CRCs), etc. Thus, the efficiency of the torus

network is g = 240/270 = 89%, or g3 0.25 = 0.22 bytes

per cycle per link. This translates to 154 MB/s/link at the

700-MHz chip frequency.

Adding up the raw bandwidth of the six incoming

and six outgoing links on each node, we obtain

123 0.25 = 3 bytes per cycle per node. The

corresponding bidirectional payload bandwidth is

2.64 bytes per cycle per node, or 1.8 GB/s/node.

The network guarantees reliable packet delivery. In any

given link, it resends packets with errors, as detected by

the CRC. Irreversible packet losses are considered to be

fatal errors and result in the machine being taken offline

for repairs. The communication library considers the

machine to be completely reliable.

Collective network

The collective network serves a dual purpose. It is

designed to perform MPI collective operations efficiently,

but it is also the main mechanism for communication

between I/O and compute nodes. The collective network

supports point-to-point messages of fixed length (256

bytes), delivering four bits of raw data per CPU cycle

(350 MB/s). It has reliability guarantees identical to the

torus. The collective packet length is fixed at 256 bytes, all

of which can be used for payload. Ten additional bytes

are added to each packet for operation control and link

reliability. Thus, the efficiency of the collective network is

g = 256/266 = 96%.

An arithmetic logic unit (ALU) in the collective

network hardware can combine incoming and local

packets using bitwise and integer operations, and forward

the resulting packet along the network. This mechanism

can be used to implement MPI collective operations.

Collective operations, such as broadcast and reductions

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 G. ALMÁSI ET AL.

395

[3], are done by having each node simply inject its

contribution into the network and extract the result.

Because the collective network ALU performs only

integer operations, floating-point MPI reductions have

to be performed in two phases, one to calculate the

exponents and another for the normalized mantissas.

Packet routing on the collective network is based on

packet classes. Collective network configuration is a

global operation that requires the configuration of all

nodes in a job partition. At the moment, we support

only MPI collective operations that involve all of the

compute nodes in a partition (i.e., operations on the

MPI_COMM_WORLD communicator in MPI).

CPU/network interface

As described before, the torus, collective, and barrier

networks are mapped into the processor memory. Torus

and collective packets are read and written by the

processor with special 16-byte single-instruction multiple-

data (SIMD) load and store instructions of the custom

FPUs. The SIMD load and store instructions used to

read and write network packets require that memory

accesses be aligned to a 16-byte boundary. However, the

MPI library does not have control over the alignment of

user buffers; moreover, a packet aligned correctly at the

sender may not be aligned correctly at the receiver

because of a different alignment of the receiving buffer.

Consequently, the MPI library is forced to realign packets

through memory-to-memory copies.

Network access overhead

Torus and collective packet reads into aligned memory

take approximately 204 CPU cycles. Packet writes can

take between 50 and 100 cycles, depending on whether the

packet is being sent from cache or main memory.

CPU streaming memory bandwidth

For MPI purposes, we are primarily interested in the

bandwidth for accessing large contiguous memory

buffers. These accesses are typically handled by prefetch

buffers in the L2 cache, resulting in a bandwidth of about

4.3 bytes per cycle.

We note that the available bandwidth of main memory

and the torus and collective networks are of the same

order of magnitude. Performing memory copies on this

machine to get data into and from the torus results in

reduced performance. It is imperative that network

communication be zero-copy wherever possible.

Operating modes and cache coherency

As mentioned before, the two PPC440 processors in a

chip are not cache-coherent. Software must take great

care to ensure that coherency is correctly handled at the

granularity of the CPU L1 cache lines: 32 bytes. Data

structures shared by the CPUs should be aligned at

32-byte boundaries to avoid coherency problems.

This restriction has resulted in multiple operating

modes for the machine. Heater mode, a term inherited

from PUMA, is how we initially developed the system

software and MPI library. In this node, one of the

processors does not contribute to the computation, but

merely sits in an idle loop. In virtual node mode, the

processors become two MPI tasks, partitioning the

memory and sharing the network resources. This has the

obvious drawback of reducing a precious commodity—

memory—even further; however, it completely solves the

coherency problem because the processors do not share

any memory. Coprocessor mode attempts to deal with the

problem head-on by allowing the second processor to

share memory and providing coherency in software.

Architecture of BG/L MPI

The Blue Gene/L MPI is an optimized port of the

MPICH2 [5] library, an MPI library designed with

scalability and portability in mind. Figure 1 shows two

components of the MPICH2 architecture: message

passing and process management. MPI process

management in BG/L is implemented using system

software services. We do not discuss this aspect of

MPICH2 further in this paper.

BG/L MPI is MPI-1.1-compliant and supports a subset

of the MPI-2 standard. There are parts of MPI-2 (such as

dynamic process management) that we do not plan to

support on BG/L; other parts of MPI-2, such as one-

sided communication, are not yet implemented, but we

have plans to support them; at the time of this writing,

MPI I/O development is still underway.

Figure 1 shows how BG/L MPI follows the overall

architecture of MPICH2. The upper layers of BG/L MPI

functionality are implemented entirely by MPICH2 code,

which also provides the implementation of point-to-

point messages, intrinsic and user-defined datatypes,

communicators, and collective operations. MPICH2

interfaces with the lower layers of the implementation

through the ADI3 layer [13], which consists of a set of

data structures and functions that must be provided

by the BG/L specific implementation.

The ADI3 interface deals with MPI requests (messages)

and functions to send, receive, and manipulate these

requests. Figure 1 depicts the ADI3 implementation on

BG/L in a separate box. The ADI3 implementation relies

on the message layer, an active message system [14–19], to

transport arbitrary-sized messages between compute

nodes using the torus network. The message layer

is described in more detail in the following section.

It interfaces with MPICH2 both by providing an

application program interface (API) that ADI3 can call,

G. ALMÁSI ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

396

and through a set of event callback functions that the

ADI3 implementation registers with the message layer.

The MPICH2 collective function implementation

provides another hook-up point for BG/L-specific

functions. We provide several implementations of

optimized collectives using specific features of the

hardware. Some of these implementations rely on the

message layer, while others go to the packet layer to

manipulate network hardware directly.

The packet layer is a very thin stateless layer of

software that simplifies access to the BG/L network

hardware. It provides functions to read and write the

torus and collective networks, and to poll the state of

the network. To help the message layer implement

zero-copy messaging protocols, the packet layer provides

convenience functions that allow software to ‘‘peek’’ at

the header of an incoming packet without incurring the

expense of unloading the whole packet from the network.

Message layer architecture
The message layer implements a functionality much like

that of the low-level application program interface

(LAPI): sending and dispatching of arbitrary-sized

messages. It is divided into three main categories: basic

functional support, point-to-point communication

primitives (or protocols), and collective communication

primitives. The base layer acts as a support infrastructure

for the implementation of all of the communication

protocols. We start with the most basic functional aspects

of the message layer—the ability to send and receive

packets and messages.

Initialization

The message layer takes full control of a number of

hardware resources in the BG/L system—all of the torus

hardware FIFOs (queues in which access becomes

available according to the first in, first out rule).

The message layer does not share these resources.

Initialization resets all state machines, primes the rank-

mapping subsystem, and selects the operating mode

(virtual node mode, heater mode, or coprocessor mode),

on the basis of input parameters.

Advance loop

The advance loop is called whenever the message layer

has to make progress sending and/or receiving packets.

While the basic operating mode of the message layer is

polling-based, the advance loop is capable of executing

from an interrupt handler. The torus (and collective)

hardware support interrupt-driven operation, although

handling a hardware interrupt costs the processor about

103 cycles of context-switching overhead.

The message layer maintains a queue of messages being

sent. Messages generate packets to be sent to the network.

When a message is done sending packets, it is dequeued

from the send queue. Incoming packets are received and

dispatched on the basis of their types.

In coprocessor and virtual node mode, the network

hardware allows simultaneous access to two disjoint sets

of hardware FIFOs without compromising performance.

In virtual node mode, an additional (virtual) queue is

used to send messages between nodes.

Posting messages

Posting a message involves insertion into a send queue.

The message layer supports several alternative ways to

send a message.

For most packets sent through the torus network, e.g.,

the datastream of an MPI rendezvous message, packet

ordering is irrelevant. These types of messages can be sent

with fewer restrictions and adaptive network routing.

Eager messages and MPI control messages are posted

to be sent with ordering guarantees. The message layer

ensures non-overtaking packet semantics by two

techniques: FIFO pinning assigns a single hardware FIFO

to a particular message, ensuring that packets enter the

network in the same order in which they are generated.

The second technique, deterministic routing (mentioned

previously in the section on the hardware and system

software impact on MPI implementation), ensures that

packets arrive at the destination in the same order in

which they entered the network.

Figure 1

Blue Gene/L MPI software architecture. (GI � global interrupt;
CIO � Control and I/O Protocol. CH3 is defined as the primary
device distributed with MPICH2 for communication; MPD �
multipurpose daemon.)

C
ol

le
ct

iv
e

op
er

at
io

ns

C
om

m
un

ic
at

io
ns

Po
in

t t
o

po
in

t

D
at

a
ty

pe

GITorus

Message
layer

Abstract device interface
(ADI3)

CH3

Socket

Torus

Collective
support

Collective
implementation GI

Packet layer

Message passing
Process

management

bg
lto

ru
s

M
PD

U
ni

pr
oc

es
so

r
Si

m
pl

e

Process
Management

Interface
(PMI)

CIO
Protocol

MPI

bgltorus

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 G. ALMÁSI ET AL.

397

Process mapping

On a machine such as BG/L, the correct mapping of MPI

applications to the torus network is a critical factor

in maintaining application performance and scaling.

Figure 2 compares the scaling characteristics of the NAS

Parallel Benchmark [7, 20, 21] Block Tridiagonal Solver

(BT) on BG/L when mapped onto a mesh naively and

optimally.

The message layer, like MPI, has a notion of process

ranks, ranging between 0 and N � 1, where N is the

number of processes participating. Message-layer ranks

are the same as the global ranks in MPI. The message

layer allows arbitrary mapping of torus coordinates to

ranks. This mapping can be specified via an input file

listing the torus coordinates of each process in increasing

rank order. An example mapping file describing a

possible mapping of eight ranks onto a 23 23 2 mesh

would look like this:

0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0
1 0 1 0
0 1 1 0
1 1 1 0

The default rank to torus coordinate mapping is called

XYZT and corresponds to the lexical ordering of (x, y, z)

triplets (in coprocessor or heater mode) or (x, y, z, t)

quadruplets (in virtual node mode, with t representing the

processor ID in each processor of a compute node).

Coprocessor mode support

To support the concurrent operation of the two non-

cache-coherent processors in a compute node (described

previously in the section on the hardware and software

impact on MPI implementation), the message layer

allows the use of the second processor both as a

communication coprocessor and as a computation

coprocessor. The message layer provides a non-L1-

cached—and hence coherent—area of the memory to

coordinate the two processors. This memory is called the

scratchpad. The main processor supplies a pool of work

units to be executed by the coprocessor. Work units can

be functions that are permanent, executed whenever the

coprocessor is idle, or transient, executed once and then

removed from the pool. An example of a permanent

function would be the one that uses the coprocessor to

help with the rendezvous protocol. To start a transient

function, one invokes the costart function provided

by the message layer. The main processor waits for the

completion of the work unit by invoking the cojoin

function.

The coprocessor can also help with communication

tasks. One of the permanent work units is a

communication thread that runs constantly.

Administrative data for messages received by the

coprocessor is held in the scratchpad. Messages processed

by the coprocessor are always aligned at cache-line

boundaries, and, at the end of the reception, the two

processors cooperatively enforce coherency in software.

Virtual node mode support

In virtual node mode, the kernel runs two separate

processes (and hence, MPI tasks): one in each processor

of a compute node. Some resources, such as the DDR

memory and the torus network, are evenly split between

the processors; others, such as the L3 cache, are shared.

The two MPI tasks running in the two CPUs of a

compute node share the network but also have to

communicate with each other. To solve this problem, we

have implemented a virtual torus device, serviced by a

virtual packet layer, in the scratchpad memory. Virtual

FIFOs make portions of the scratchpad look like a send

FIFO to one of the processors and a receive FIFO to the

other. Access to the virtual FIFOs is mediated with help

from the hardware lockboxes.

Virtual node mode doubles the number of tasks in

the message layer; it also introduces a refinement in

the addressing of tasks. As shown in the mapping file

above, instead of being addressed with a triplet (x, y, z)

denoting the torus coordinates, tasks are addressed with

quadruplets (x, y, z, t) where t is the processor ID (0 or 1)

in the current node. In coprocessor mode, t is always 0.

Message-layer support for MPI point-to-point

communication

To facilitate the implementation of MPI, the message

layer provides a number of protocols to support point-to-

point message transmission. The protocols are each suited

for particular bandwidth and latency requirements. The

BG/L MPI implementation uses all of these protocols,

depending on communication requirements.

The point-to-point messaging protocols are designed

for easy interaction with MPICH2. To match the

MPI relaxed completion semantics and allow for

good performance, all message-layer primitives are

nonblocking; the results of user actions are announced

through callbacks registered by the user.

To send a message, the user of the message layer must

be given the send buffer. In addition, at least one message

object must be allocated. This is typically done by

colocating message objects with MPI Request objects.

The message is initialized by the MPI call that sends the

message, and it is then posted to the message layer. The

message carries the address of the done () callback

function that will be called when the send is complete;

this callback will then update the MPI Request object

accordingly.

G. ALMÁSI ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

398

At the receiving end, an incoming message triggers

an upcall to MPI, which retrieves a Request object by

consulting MPICH2 data structures. Further incoming

packets will be directed to this Request object and update

its status until the received message is complete.

Every messaging protocol knows how to packetize and

unpacketize messages, i.e., how to break down a send

buffer into torus and collective packets and how to

restore the message from the packets at the receiving end.

Eager protocol

The eager protocol is one of the simplest in terms of both

the programmer interface and implementation. The

sender assumes that the receiver will be able to handle

the message and simply starts sending packets.

To ensure correct MPI semantics, eager protocol

packets are sent with ordering guarantees, i.e., by

enforcing both FIFO pinning and packet ordering on

the network. Unpacking eager protocol packets is simple:

An offset counter keeps track of the current position in

the message and unpacks incoming packets into the

appropriate addresses.

Because of the deterministic routing, the eager protocol

is unsuitable for longer messages, since it tends to create

hot spots in the network, causing slowdowns.

‘‘One packet ’’ protocol

The ‘‘one packet’’ protocol is a simplified version of the

eager protocol for cases in which the send buffer fits into

a single packet. It is the ideal protocol for very short

messages because it has a very low overhead.

Rendezvous protocol

The rendezvous protocol corrects deficiencies that are

suffered by both the one-packet and eager protocols.

In the rendezvous protocol, data packets are adaptively

routed, avoiding the creation of hot spots in the network.

Also, in coprocessor mode, rendezvous protocol packets

can be received by the coprocessor, freeing up the main

processor and allowing for better simultaneous use of all

links.

In the rendezvous protocol, the sender first sends a

scout packet to the receiver, asking for permission to send

the rest of the data. To satisfy MPI ordering semantics, it

is enough to ensure the order of the scout packet with

respect to the rest of the traffic between the sender

and receiver; rendezvous data packets can be routed

dynamically. This is true because, while MPI requires

messages to be matched at the receiver in the same order

in which they were sent, no requirements exist with

respect to the order in which messages are actually sent.

In our current implementation of the protocol,

reception is executed by the coprocessor, subject to

availability, cache coherency, and alignment constraints.

In particular, the receiver coprocessor is able to handle

only packets carrying contiguous data aligned at cache-

line boundaries (to avoid coherency problems).

Adaptive eager protocol

The adaptive eager protocol is a version of the eager

protocol that uses no deterministically routed packets.

To ensure MPI matching semantics, the receiver sends

a confirmation packet every time a new message is

matched. The sender has to wait for the confirmation

before sending a new message.

The obvious drawback of this solution is that there is

a lag time of at least one network round trip between

subsequent message sends. This limits performance if

the sender is sending many short messages to the same

receiver. This situation, however, is unlikely to appear in

well-tuned MPI programs, because it can be fixed very

easily by sending one larger message instead of many

small ones. We believe that the adaptive eager protocol

will become more important as the BG/L machine is

scaled beyond 20,000 processors, when the negative

characteristics of the (deterministically routed) eager

protocol will start to appear.

Virtual node mode protocol

The virtual node mode protocol helps communication

between the two processors on the same node when the

system operates in virtual node mode. Since each of the

two processors can see the memory area of the other, this

protocol involves sending a packet from the sender to the

receiver indicating the address of the send buffer. The

Figure 2

Comparison of NAS BT benchmark (class B) scaling characteris-
tics when mapped onto the Blue Gene/L torus naively (red curve)
and optimally (blue curve).

100 200 300 400 500 600 700 800 900 1,000 1,100

Number of processors

N
A

S
B

T
 p

er
fo

rm
an

ce
 (

M
op

s/
s/

pr
oc

es
so

r)

Naive (standard) mapping
Optimized mapping for NAS BT

100

90

80

70

60

50

40

30

20

10

0

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 G. ALMÁSI ET AL.

399

receiver then copies the buffer into local memory and

notifies the sender (through a response packet) that the

send buffer can be overwritten. This mechanism allows

for much faster communication than through the

scratchpad, because the message data is not cycled

through uncached memory.

Message-layer support for MPI collective operations

Most MPI implementations, including MPICH2,

typically implement collective communication in terms

of point-to-point messages. On the BG/L platform, the

default collective implementations of MPICH2 suffer

from low performance for at least three reasons:

� The MPICH2 collectives are written for a crossbar-

type network, not for special network topologies such

as the BG/L torus network. Thus, the default

implementation more often than not suffers from

poor mapping (see the previous section on message-

layer architecture).
� Point-to-point messaging in BG/L MPI has a high

overhead because of the relative slowness of the

CPU compared with the network speed. Thus,

implementing, for example, MPI broadcast in

terms of a series of point-to-point messages results

in poor behavior at short message sizes, where

overhead dominates the execution time of the

collective.
� Some of the network hardware performance-

enhancing properties are unused when only standard

point-to-point messaging is employed. A good

example of such a feature is the torus deposit bit,

which lets packets be ‘‘deposited’’ on every node they

touch on the way to the destination. Another such

feature is the collective network, which is not used at

all by point-to-point messaging.

Our work on collective communication in the message

layer is far from complete. In this paper, we present

the concepts behind optimized MPI_Bcast and

MPI_Alltoall [v] algorithms.

The standard MPICH2 implementation of MPI_Bcast

is a binomial tree algorithm; for large messages it is

implemented as a binomial scatter followed by an

allgather. This algorithm, mapped naively into the torus,

causes several links to be used by multiple streams at

once, resulting in low aggregate bandwidth.

We have implemented a version of MPI broadcast

based on van de Geijn’s optimized mesh algorithm [22],

which uses the multicast capability of the torus hardware

to broadcast packets in a rectangular region of the

mesh/torus. The algorithm is pipelined at a packet

level. Figure 3 shows the route of a single packet in

a 43 43 4 mesh. The route is fairly complicated,

but allows up to three such routes to be set up in the

same 3D mesh without any two routes sharing a

torus link. The algorithm can then cut the message

into three equal parts, allowing broadcast to happen

up to three times faster on this network.

The expected performance of the optimized torus

broadcast algorithm depends on the number of

simultaneous edge-disjoint spanning trees that can be

found in a rectangular region. In addition, performance is

limited by synchronization problems (as discussed by

Watts and van de Geijn [22]), and by the load on the

processors, which have to keep up with considerable

incoming and outgoing traffic on the links.

We have also written a version of MPI_Alltoall [v]

that uses the message layer directly and optimizes the

injection of packets to achieve high network efficiency.

While our algorithm is conceptually equivalent to the

greedy ‘‘post everything/wait’’ algorithm also employed

by MPICH2, it yields better performance because, at the

message-layer level, we are able to optimize packet

injection to even out network traffic and we are able to

use the memory system prefetch engines to obtain faster

access to read buffers.

Our short-term future plans include implementations

of MPI_Barrier, MPI_Allgatherv, and MPI_Allreduce.

Figure 3

One of three independent deposit-bit-based broadcast routes in a
three-dimensional mesh.

0

1

2

3

3
0

1
2

3
2

1

0

G. ALMÁSI ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

400

Our primary focus is on these primitives because they are

in demand by the people doing application tuning on

BG/L today. In particular, broadcast, allgather, and

barrier are heavily used by the High-Performance

Linpack (HPL) benchmark [23], which determines the

Top500 [24] ranking of BG/L.

Performance analysis

In this section, we discuss the performance characteristics

of the MPI library. We present microbenchmark results

that analyze different aspects of our current MPI

implementation. We compare different message-passing

protocols. We compare performance between coprocessor

mode and virtual node mode. Finally, we measure the

performance of BG/L-specific optimized implementations

of some MPI collectives.

To measure performance, we used various

microbenchmarks, some written directly on top of the

message layer, others on top of MPI. These are some

of the same benchmarks we actually used in the

development of the message layer and MPI.

All performance figures presented in this paper were

measured on second-generation BG/L systems running at

700 MHz. Most of our microbenchmark runs were made

on 32-node systems. Scalability studies were performed

on systems consisting of up to 512 nodes.

Table 1 shows the half-round-trip latency of one-

byte messages sent with all of the four point-to-point

protocols. Latencies were measured between two nearest

neighbors in the torus, with both message-layer and MPI

versions of Turner’s pong program [25]. The one-packet

protocol has the lowest overhead, about 1,600 cycles.

The highest overhead by far belongs to the rendezvous

protocol, with the two eager variants in the middle of the

range. When measured from within MPI, the latency

numbers increase drastically because of the additional

software overhead. All measurements are shown both

in cycles and in microseconds.

MPI adds approximately 750 cycles of overhead in the

case of the one-packet protocol and more than 1,300

cycles in the case of the eager protocol. In the case of the

adaptive eager protocol, MPI overhead also measures the

time required to obtain the next token from the receiver;

hence, MPI time more than doubles compared with the

message-layer timing.

Figure 4(a) shows half-round-trip latency as a function

of the Manhattan distance1 between the sender and the

receiver in the torus. The figure clearly shows a linear

dependency, starting with 3.35 ls for nearest-neighbor
nodes and increasing by 90 ns with every hop.

Point-to-point message bandwidth

Figure 4(b) shows MPI bandwidth measured on a

single bidirectional link of the machine (sending and

receiving at the same time). The figure shows the raw

bandwidth limit of the machine running at 700 MHz

(2 links3 175 = 350 MB/s), the net bandwidth limit

(g3 23 175 = 310 MB/s), and the measured bandwidth

as a function of message size. The figure shows good

performance for relatively short message sizes: half

bandwidth is reached for messages of 500 bytes.

Figures 4(c), 4(d), 4(e), and 4(f) compare the multilink

performance of the eager, adaptive eager, and rendezvous

protocols, the latter with and without the help of the

coprocessor. We can observe the number of simultaneous

active connections that a node can handle. This is

determined by the amount of time spent by the processor

handling each individual packet belonging to a message;

when the processor cannot handle the incoming and

outgoing traffic, the network backs up.

In the case of the eager and rendezvous protocols,

without the help of the coprocessor, the main processor is

able to handle two bidirectional links simultaneously. The

adaptive eager protocol, which is the least optimized at

the moment, cannot handle even two links. In any case,

when network traffic increases, the processor becomes

a bottleneck, as shown by Figures 4(c), 4(d), and 4(e).

Figure 4(f) shows the effect of the coprocessor helping

out in the rendezvous protocol: MPI is able to handle the

simultaneous traffic of more than three bidirectional

links in this case.

Coprocessor and virtual node modes compared

Figure 5(a) shows a comparison of per-task performance

in coprocessor and virtual node modes. We ran a subset

of the out-of-the-box version of Class B NAS Parallel

Benchmarks [21] on a 32-compute-node subsystem of the

512-node BG/L prototype. The numbers of MPI tasks in

coprocessor mode that we used are as follows: 25 for BT

and SP and 32 for the other benchmarks. In virtual node

mode, we used 64 MPI tasks for all benchmarks.

Table 1 Round-trip latency comparison of all protocols.

(� Springer Verlag LNCS 3149,3241, 2004. Reprinted with

permission.)

Protocol name Message layer MPI

Cycles ls Cycles ls

One-packet 1,600 2.29 2,350 3.35

Eager 2,700 3.86 4,000 5.71

Adaptive eager 3,300 4.71 11,000 15.71

Rendezvous 12,000 17.14 17,500 25.0

1 The ‘‘Manhattan distance’’ between two points is the sum of the (absolute)
differences of their coordinates. Informally, it is like having to walk on a grid—
something like city blocks in New York—to get to your destination.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 G. ALMÁSI ET AL.

401

Figure 4

(a) Round-trip latency as a function of Manhattan distance. Comparison of multilink bandwidth performance of MPI protocols: (b) single
link measured MPI bandwidth, (c) eager protocol, (d) rendezvous protocol, (e) adaptive eager protocol, and (f) rendezvous protocol with
coprocessor support. (©2004, Springer Verlag LNCS 3149,3241. Reprinted with permission.)

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

Manhattan distance
(a)

O
ne

-h
al

f
ro

un
d-

tr
ip

 la
te

nc
y

 (
 s

)

0

50

100

150

200

250

300

350

Message length (bytes)
(b)

Se
nd

 a
nd

 r
ec

ei
ve

 b
an

dw
id

th
 (

M
B

/s
)

Se
nd

 a
nd

 r
ec

ei
ve

 b
an

dw
id

th
 (

M
B

/s
)

Se
nd

 a
nd

 r
ec

ei
ve

 b
an

dw
id

th
 (

M
B

/s
)

Se
nd

 a
nd

 r
ec

ei
ve

 b
an

dw
id

th
 (

M
B

/s
)

Se
nd

 a
nd

 r
ec

ei
ve

 b
an

dw
id

th
 (

M
B

/s
)

Single link
Payload maximum
bandwidth
Raw maximum
bandwidth

0

200

400

600

800

1,000

1,200

Message length (bytes)
(c)

0

200

400

600

800

1,000

1,200

Message length (bytes)
(d)

0

200

400

600

800

1,000

1,200

Message length (bytes)
(e)

One link
Two links
Three links
Four links
Five links

One link
Two links
Three links
Four links
Five links
Six links

One link
Two links
Three links
Four links
Five links
Six links

One link
Two links
Three links
Four links
Five links
Six links

0

200

400

600

800

1,000

1,200

Message length (bytes)
(f)

1 4 16 128 1,024 8,192 65,536 1,048,576

1 4 16 128 1,024 8,192 65,536 1,048,576

1 4 16 128 1,024 8,192 65,536 1,048,576

1 4 16 128 1,024 8,192 65,536 1,048,576

1 4 16 128 1,024 8,192 65,536 1,048,576

�

G. ALMÁSI ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

402

Ideally, per-task performance in virtual node mode

would be equal to that in coprocessor mode, resulting in a

net doubling of total performance (because of the doubling

of tasks executing). However, because of sharing node

resources—including the L3 cache, memory bandwidth,

and communication networks—individual processor

efficiency degrades between 2% and 20%, resulting in

less than ideal performance results. Nevertheless, the

improvement warrants the use of virtual node mode for

these classes of computation-intensive codes.

Optimized MPI broadcast on the torus and collective

Figure 5(b) compares the performance of three

implementations of MPI_Bcast. The baseline is the

default implementation of MPI_Bcast in MPICH2 using

point-to-point messages. We compare this with a mesh-

aware implementation of broadcast using point-to-

point MPI messages. Finally, we have a mesh-aware

implementation of broadcast directly in the message

layer, this one using the deposit-bit feature of the torus

network hardware. All three algorithms ran on the same

43 43 2 mesh.

The standard MPI broadcast outperforms both of the

optimized algorithms for small message lengths but tops

out at about 60 MB/s, less than half the bandwidth of a

single link. The collective-based implementation reaches

100% efficiency (about 350 MB/s bandwidth); the torus-

based implementation tops out at a bit less than two

links’ worth of bandwidth, or about 60% efficiency

compared with its theoretical peak. The root cause

for the relatively low efficiency is that the processor is

unable to keep up with the torus traffic. We are planning

to correct this, at least in coprocessor mode, by allowing

the coprocessor to help with the broadcast.

Optimized MPI alltoall[v] on the torus

Figure 6 compares the performance of two

implementations of MPI_Alltoall. The baseline is the

unmodified MPICH2 implementation. The MPICH2 uses

one of four strategies, depending on message size and

communicator size, but all four algorithms are essentially

designed for multiported systems [26].

We compare the baseline with a highly optimized

message-layer-based implementation of alltoall which

injects packets in an order that allows good memory

use at the sender and evens traffic in the network.

Figure 5

(a) Comparison of per-task performance in coprocessor and virtual
node mode. (b) Performance comparison of broadcast implemen-
tations.

CG EP FT LU BT SP
0

20

40

60

80

100

120

140

160

180

Benchmark name
(a)

N
A

S
pe

rf
or

m
an

ce
 (

M
op

s/
s/

pr
oc

es
so

r)

Coprocessor mode
Virtual node mode

0 26 472 8,090 138,253 2.3622 � 106
0

50

100

150

200

250

300

350

Message length (bytes)
(b)

B
an

dw
id

th
 (

M
B

/s
)

MPICH2
Torus
Collective

Figure 6

Comparison of MPI_Alltoall implementations.

16 256 4,096 65,536
0

10

20

30

40

50

60

70

80

90

100

Message size (bytes)

E
ff

ic
ie

nc
y

 (
%

)

Standard MPICH2 alltoall
Message-layer-based alltoall

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 G. ALMÁSI ET AL.

403

We consider 100% efficiency to be represented by the

theoretical cross-section bandwidth of the network

(an 83 83 8 mesh for this experiment). The optimized

implementation achieves close to 100% efficiency, while

the baseline goes up only to 30%.

Conclusions
The Blue Gene/L supercomputer represents a new level

of scalability in massively parallel computers. Given

the large number of nodes, each with its own private

memory, we need an efficient implementation of message-

passing services, particularly in the form of an MPI

library, to effectively support application programmers.

The BG/L architecture provides a variety of features that

can be exploited in an MPI implementation, including the

torus and collective networks and the two processors

in a compute node.

This paper reports on the architecture of our MPI

implementation and presents initial performance results.

Starting with MPICH2 as a basis, we provided an

implementation that efficiently uses the collective and

torus networks and has two modes of operation for

leveraging the two processors in a node. Key to our

approach was the definition of a BG/L message layer that

maps directly to the hardware features of the machine.

The performance results show that different message

protocols exhibit different performance behaviors,

with each protocol being better for a different class of

messages. The results also show that the coprocessor

mode of operation provides the best communication

bandwidth, whereas the virtual node mode can be very

effective for the computation-intensive codes represented

by the NAS Parallel Benchmarks.

Our MPI library is already being used by various

application programmers at IBM and LLNL, and those

applications are demonstrating very good performance

and scalability in Blue Gene/L. Other application-level

communication libraries, which would be implemented

using the BG/L message layer, are also being considered

for the machine. The lessons learned on this prototype

will guide us as we move to larger and larger machine

configurations.

Acknowledgments
The Blue Gene/L project has been supported and

partially funded by the Lawrence Livermore National

Laboratory on behalf of the United States Department of

Energy under Lawrence Livermore National Laboratory

Subcontract No. B517552.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds in the
United States, other countries, or both.

References
1. G. S. Almási, D. Beece, R. Bellofatto, G. Bhanot, R.

Bickford, M. Blumrich, A. A. Bright, J. Brunheroto, C.
Cascaval, J. Castaños, L. Ceze, P. Coteus, S. Chatterjee,
D. Chen, G. Chiu, T. M. Cipolla, P. Crumley, A. Deutsch,
M. B. Dombrowa, W. Donath, M. Eleftheriou, B. Fitch, J.
Gagliano, A. Gara, R. Germain, M. E. Giampapa, M.
Gupta, F. Gustavson, S. Hall, R. A. Haring, D. Heidel, P.
Heidelberger, L. M. Herger, D. Hoenicke, R. D. Jackson,
T. Jamal-Eddine, G. V. Kopcsay, A. P. Lanzetta, D. Lieber,
M. Lu, M. Mendell, L. Mok, J. Moreira, B. J. Nathanson,
M. Newton, M. Ohmacht, R. Rand, R. Regan, R. Sahoo,
A. Sanomiya, E. Schenfeld, S. Singh, P. Song, B. D.
Steinmacher-Burow, K. Strauss, R. Swetz, T. Takken, P.
Vranas, T. J. C. Ward, J. Brown, T. Liebsch, A. Schram, and
G. Ulsh, ‘‘Cellular Supercomputing with System-on-a-Chip,’’
Proceedings of the IEEE International Solid-State Circuits
Conference (ISSCC), Digest of Technical Papers, Vol. 2, 2002,
pp. 152–153.

2. N. R. Adiga et al., ‘‘An Overview of the Blue Gene/L
Supercomputer,’’ Proceedings of the ACM/IEEE Conference
on Supercomputing, 2002, pp. 1–22; see http://www.sc-
conference.org/sc2002/.

3. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J.
Dongarra, MPI: The Complete Reference, Second Edition,
The MIT Press, Cambridge, MA, 2000.

4. G. Almási, C. Archer, J. G. Castaños, M. Gupta, X.
Martorell, J. E. Moreira, W. Gropp, S. Rus, and B. Toonen,
‘‘MPI on BlueGene/L: Designing an Efficient General Purpose
Messaging Solution for a Large Cellular System,’’ Proceedings
of the 10th European PVM/MPI Users’ Group Meeting, 2003,
pp. 252–261.

5. MPICH and MPICH2 homepage; see http://
www-unix.mcs.anl.gov/mpi/mpich.

6. N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara,
M. E. Giampapa, P. Heidelberger, S. Singh, B. D.
Steinmacher-Burow, T. Takken, M. Tsao, and P. Vranas,
‘‘Blue Gene/L Torus Interconnection Network,’’ IBM J. Res.
& Dev. 49, No. 2/3, 265–276 (2005, this issue).

7. NAS Parallel Benchmarks; see http://www.nas.nasa.gov/
Software/NPB.

8. A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus,
M. E. Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke,
G. V. Kopcsay, T. A. Liebsch, M. Ohmacht, B. D.
Steinmacher-Burow, T. Takken, and P. Vranas, ‘‘Overview of
the Blue Gene/L System Architecture,’’ IBM J. Res. & Dev. 49,
No. 2/3, 195–212 (2005, this issue).

9. G. Almási, R. Bellofatto, J. Brunheroto, C. Cascaval, J. G.
Castaños, L. Ceze, P. Crumley, C. Erway, J. Gagliano, D.
Lieber, X. Martorell, J. E. Moreira, A. Sanomiya, and K.
Strauss, ‘‘An Overview of the BlueGene/L System Software
Organization,’’ Proceedings of the 9th International Euro-Par
Conference, 2003, pp. 543–555.

10. J. E. Moreira, G. Almási, C. Archer, R. Bellofatto, P. Bergner,
J. R. Brunheroto, M. Brutman, J. G. Castaños, P. G. Crumley,
M. Gupta, T. Inglett, D. Lieber, D. Limpert, P. McCarthy, M.
Megerian, M. Mendell, M. Mundy, D. Reed, R. K. Sahoo,
A. Sanomiya, R. Shok, B. Smith, and G. G. Stewart, ‘‘Blue
Gene/L Programming and Operating Environment,’’ IBM J.
Res. & Dev. 49, No. 2/3, 367–376 (2005, this issue).

11. L. Shuler, R. Riesen, C. Jong, D. van Dresser, A. B. Maccabe,
L. A. Fisk, and T. M. Stallcup, ‘‘The PUMA Operating
System for Massively Parallel Computers,’’ Proceedings of the
Intel Supercomputer Users’ Group, Annual North America
Users’ Conference, 1995.

12. Monta Vista Software, 1237 East Arques Avenue, Sunnyvale,
CA 94085; see http://www.mvista.com.

13. W. Gropp, E. Lusk, D. Ashton, R. Ross, R. Thakur, and
B. Toonen, MPICH Abstract Device Interface Version 3.4
Reference Manual, May 20, 2003 (draft); see http://
www-unix.mcs.anl.gov/mpi/mpich/adi3/adi3man.pdf.

G. ALMÁSI ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

404

14. G. Chiola and G. Ciaccio, ‘‘Gamma: A Low-Cost Network of
Workstations Based on Active Messages,’’ Proceedings of the
5th EUROMICRO Workshop on Parallel and Distributed
Processing, 1997.

15. S. Pakin, M. Lauria, and A. Chien, ‘‘High Performance
Messaging on Workstations: Illinois Fast Messages (FM) for
Myrinet,’’ Proceedings of the International Conference on
Supercomputing, 1995, pp. 1–22.

16. T. von Eicken, A. Basu, V. Buch, and W. Vogels, ‘‘U-Net:
A User-Level Network Interface for Parallel and Distributed
Computing,’’ Proceedings of the 15th ACM Symposium on
Operating Systems Principles, 1995, pp. 40–53.

17. T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser, ‘‘Active Messages: A Mechanism for Integrated
Communication and Computation,’’ Proceedings of the 19th
International Symposium on Computer Architecture, 1992, pp.
256–266.

18. M. Banikazemi, R. Govindaraju, R. Blackmore, and D. K.
Panda, ‘‘MPI-LAPI: An Efficient Implementation of MPI for
IBM RS/6000 SP Systems,’’ IEEE Trans. Parallel & Distr.
Syst. 12, No. 10, 1081–1093 (October 2001).

19. R. Brightwell and L. Shuler, ‘‘Design and Implementation of
MPI on Puma Portals,’’ Proceedings of the 2nd MPI
Developer’s Conference, 1996, pp. 18–25.

20. D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga, ‘‘The NAS Parallel Benchmarks,’’ Int.
J. Supercomputer Appl. 5, No. 3, 63–73 (1991).

21. D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A.
Woo, and M. Yarrow, ‘‘The NAS Parallel Benchmarks 2.0,’’
Technical Report NAS-95-020, NASA Ames Research Center,
Moffett Field, CA 94035, December 1995; see http://
www.nas.nasa.gov/Research/Reports/Techreports/1995/PDF/
nas-95-020.pdf.

22. J. Watts and R. van de Geijn, ‘‘A Pipelined Broadcast for
Multidimensional Meshes,’’ Parallel Processing Lett. 5, No. 2,
281–292 (1995).

23. HPL Benchmark; see http://www.netlib.org/benchmark/hpl/.
24. J. Dongarra, H.-W. Meuer, and E. Strohmaier, TOP500

Supercomputer Sites; see http://www.netlib.org/benchmark/
top500.html.

25. D. Turner, A. Oline, X. Chen, and T. Benjegerdes,
‘‘Integrating New Capabilities into NetPIPE,’’ Proceedings of
the 10th European PVM/MPI Users’ Group Meeting, 2003; see
http://www.scl.ameslab.gov/netpipe/np_euro.pdf.

26. J. Bruck, C.-T. Ho, S. Kipnis, and D. Weathersby, ‘‘Efficient
Algorithms for All-to-All Communications in Multi-Port
Message-Passing Systems,’’ Proceedings of the 6th Annual
ACM Symposium on Parallel Algorithms and Architectures
(SPAA), 1994, pp. 298–309.

Received June 8, 2004; accepted for publication
July 27,

George Almási IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (gheorghe@us.ibm.com). Dr. Almási is a Research Staff
Member at the IBM Thomas J. Watson Research Center. He
received an M.S. degree in electrical engineering from the Technical
University of Cluj-Napoca, Romania, in 1991 and an M.S. degree
in computer science from West Virginia University in 1993. In 2001
he received a Ph.D. degree in computer science from the University
of Illinois at Urbana–Champaign; his thesis dealt with ways of
optimizing and compiling MATLAB code. For the last three years,
Dr. Almási has been working on various aspects of the Blue Gene
system software environment, including the MPI communication
libraries.

Charles Archer IBM Systems and Technology
Group, 3605 Highway 52 N., Rochester, Minnesota 55901
(archerc@us.ibm.com). Mr. Archer is a software engineer working
on the Blue Gene/L project. He received a B.S. degree in chemistry
and a B.A. degree in mathematics from Minnesota State University
at Moorhead, and an M.S. degree in chemistry from Columbia
University. He is currently a graduate student in computer science
at the University of Minnesota. Mr. Archer has worked on the
OS/400* PASE project and grid computing. His current role is
development, optimization, and maintenance of the Blue Gene/L
message-passing software stack.

José Gabriel Castaños IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (castanos@us.ibm.com). Dr. Castaños joined the Blue
Gene project in 2000 after receiving his Ph.D. degree in computer
science at Brown University. His initial assignment as a Research
Staff Member involved the development of applications for high-
performance computing. He later became one of the technical
leaders of the Blue Gene/L systems software and worked on many
of its components: integrated software development environment,
simulators, kernels, runtime libraries, and management
infrastructure. Dr. Castaños received his undergraduate degrees
in systems analysis (1988) and operations research (1989) at
the Universidad Católica, Buenos Aires, Argentina.

John A. Gunnels IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (gunnels@us.ibm.com). Dr. Gunnels received his Ph.D.
degree in computer science from the University of Texas at Austin.
He joined the Mathematical Sciences Department of the IBM
Thomas J. Watson Research Center in 2001. His research interests
include high-performance mathematical routines, parallel
algorithms, library construction, compiler construction, and
graphics processors. Dr. Gunnels has coauthored several journal
papers and conference papers on these topics.

C. Chris Erway Computer Science Department, Brown
University, P.O. Box 1910, Providence, Rhode Island 02912
(cce@cs.brown.edu). Mr. Erway received a B.A. degree in
computer science and music from Cornell University in 2002. He is
currently a Ph.D. student in computer science at Brown University.
Mr. Erway was a student software engineer at the IBM Thomas J.
Watson Research Center working on Blue Gene system software.

Philip Heidelberger IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (philiph@us.ibm.com). Dr. Heidelberger received a
B.A. degree in mathematics from Oberlin College in 1974 and a
Ph.D. degree in operations research from Stanford University in

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 G. ALMÁSI ET AL.

405

2004; Internet publication April 12, 2005

1978. He has been a Research Staff Member at the IBM Thomas J.
Watson Research Center since 1978. His research interests include
modeling and analysis of computer performance, probabilistic
aspects of discrete event simulations, parallel simulation, and
parallel computer architectures. He has authored more than 100
papers in these areas. Dr. Heidelberger has served as Editor-in-
Chief of the ACM Transactions on Modeling and Computer
Simulation. He was the general chairman of the ACM Special
Interest Group on Measurement and Evaluation (SIGMETRICS)
Performance 2001 Conference, the program co-chairman of the
ACM SIGMETRICS Performance 1992 Conference, and the
program chairman of the 1989 Winter Simulation Conference.
Dr. Heidelberger is currently the vice president of ACM
SIGMETRICS; he is a Fellow of the ACM and the IEEE.

Xavier Martorell Technical University of Catalonia, Campus
Nord, Modul D6, Jordi Girona 1-3, 08034 Barcelona, Spain
(xavim@us.ibm.com). Dr. Martorell received M.E. and Ph.D.
degrees in computer science from the Technical University of
Catalonia (UPC) in 1991 and 1999, respectively. Since 1992 he
has lectured on operating systems and parallel runtime systems.
He has been an associate professor in the Computer Architecture
Department at UPC since 2001. His research interests cover the
areas of operating systems, runtime systems, and compilers for
high-performance multiprocessor systems. Dr. Martorell has
participated in several long-term research projects with other
universities and industries, primarily in the framework of the
European Union ESPRIT and IST programs, and also in
collaboration with the IBM Thomas J. Watson Research
Center.

José E. Moreira IBM Systems and Technology Group,
3605 Highway 52 N., Rochester, Minnesota 55901
(jmoreira@us.ibm.com). Dr. Moreira received B.S. degrees in
physics and electrical engineering in 1987 and an M.S. degree in
electrical engineering in 1990, all from the University of São Paulo,
Brazil. He received his Ph.D. degree in electrical engineering from
the University of Illinois at Urbana–Champaign in 1995. Since
joining IBM in 1995, he has been involved in several high-
performance computing projects, including the teraflop-scale ASCI
Blue-Pacific, ASCI White, and Blue Gene/L. Dr. Moreira was a
manager at the IBM Thomas J. Watson Research Center from
2001 to 2004; he is currently the Lead Software Systems Architect
for the IBM eServer Blue Gene solution. Dr. Moreira is the author
of more than 70 publications on high-performance computing. He
has served on various thesis committees and has been the chair
or vice-chair of several international conferences and workshops.
Dr. Moreira interacts closely with software developers, hardware
developers, system installers, and customers to guarantee that the
delivered systems work effectively and accomplish their intended
missions successfully.

Kurt Pinnow IBM Engineering and Technology Services, 3605
Highway 52 N., Rochester, Minnesota 55901 (kwp@us.ibm.com).
Mr. Pinnow is a Senior Technical Staff Member at IBM Rochester,
Minnesota. He graduated from the University of Wisconsin in 1969
with a B.S. degree in applied mathematics and engineering physics,
and since 1972 has worked at IBM in various performance-related
capacities. His performance interests include communications
performance, file systems performance, database performance, and
general operating system architecture. Over the years he has been
involved in both major revisions and minor software adjustments
of the I-series infrastructure as it relates to performance. Mr.
Pinnow has been working on the Blue Gene team for the last 18
months. His interests on this project include MPI and file systems
performance areas, where he is involved in ensuring that Blue
Gene/L meets its performance goals.

Joseph Ratterman IBM Engineering and Technology
Services, 3605 Highway 52 N., Rochester, Minnesota 55901
(jratt@us.ibm.com). Mr. Ratterman is a software engineer at IBM
Rochester. Since receiving a B.S. degree in computer engineering
from Iowa State University in 2003, he has been working on
various performance-related aspects of Blue Gene/L, focusing
primarily on MPI communication performance.

Burkhard D. Steinmacher-Burow IBM Research Division,
Thomas J. Watson Research Center, P.O. Box 218, Yorktown
Heights, New York 10598 (steinmac@us.ibm.com). Dr.
Steinmacher-Burow is a Research Staff Member in the Exploratory
Server Systems Department. He received a B.S. degree in physics
from the University of Waterloo in 1988, and M.S. and Ph.D.
degrees from the University of Toronto in 1990 and 1994,
respectively. He subsequently joined the Universitaet Hamburg
and then the Deutsches Elektronen-Synchrotron to work in
experimental particle physics. In 2001, he joined the IBM Thomas
J. Watson Research Center and has since worked in many
hardware and software areas of the Blue Gene research program.
Dr. Steinmacher-Burow is an author or coauthor of more than 80
technical papers.

William Gropp Mathematics and Computer Science Division,
Argonne National Laboratory, 9700 South Cass Avenue, Argonne,
Illinois 60439 (gropp@mcs.anl.gov). Dr. Gropp received a B.S.
degree in mathematics from Case Western Reserve University in
1977, an M.S. degree in physics from the University of Washington
in 1978, and a Ph.D. degree in computer science from Stanford in
1982. He subsequently held the positions of assistant professor
(1982–1988) and associate professor (1988–1990) in the Computer
Science Department at Yale University. In 1990 he joined the
Numerical Analysis Group at the Argonne National Laboratory,
where he is a Senior Computer Scientist and Associate Director
of the Mathematics and Computer Science Division, a Senior
Scientist in the Department of Computer Science at the University
of Chicago, and a Senior Fellow in the Argonne–Chicago
Computation Institute. Dr. Gropp’s research interests are in
parallel computing, software for scientific computing, and
numerical methods for partial differential equations. He has
played a major role in the development of the Message Passing
Interface Standard. He is a coauthor of the most widely used
implementation of MPI, MPICH, and he was involved in the MPI
Forum as a chapter author for both MPI-1 and MPI-2. He has
written many books and papers on MPI, including Using MPI and
Using MPI-2. Dr. Gropp is one of the designers of the PETSc
parallel numerical library; he has developed efficient and scalable
parallel algorithms for the solution of linear and nonlinear
equations.

Brian Toonen Mathematics and Computer Science Division,
Argonne National Laboratory, 9700 South Cass Avenue, Argonne,
Illinois 60439 (toonen@mcs.anl.gov). Mr. Toonen received his B.S.
degree in computer science from the University of Wisconsin at
Oshkosh in 1993 and his M.S. degree in computer science from the
University of Wisconsin at Madison in 1997. He is a Senior
Scientific Programmer with the Mathematics and Computer
Science Division at the Argonne National Laboratory. His
research interests include parallel and distributed computing,
operating systems, and networking. Mr. Toonen is currently
working with the MPICH team to create a portable, high-
performance implementation of the MPI-2 standard. Prior to
joining the MPICH team, he was a Senior Developer for the
Globus Project.

G. ALMÁSI ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

406

